Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 46(1): 126390, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566621

RESUMO

A taxonomic study was conducted on 16 bacterial strains isolated from wild Adélie penguins (Pygoscelis adeliae) from Seymour (Marambio) Island and James Ross Island. An initial screening by repetitive sequence-based PCR fingerprinting divided the strains studied into four coherent groups. Phylogenetic analysis based on 16S rRNA gene sequences assigned all groups to the genus Corynebacterium and showed that Corynebacterium glyciniphilum and Corynebacterium terpenotabidum were the closest species with 16S rRNA gene sequence similarities between 95.4 % and 96.5 %. Further examination of the strains studied with ribotyping, MALDI-TOF mass spectrometry, comprehensive biotyping and calculation of average nucleotide identity and digital DNA-DNA hybridisation values confirmed the separation of the four groups from each other and from the other Corynebacterium species. Chemotaxonomically, the four strains P5828T, P5850T, P6136T, P7210T representing the studied groups were characterised by C16:0 and C18:1ω9c as the major fatty acids, by the presence of meso-diaminopimelic acid in the peptidoglycan, the presence of corynemycolic acids and a quinone system with the predominant menaquinone MK-9(H2). The results of this study show that the strains studied represent four new species of the genus Corynebacterium, for which the names Corynebacterium antarcticum sp. nov. (type strain P5850T = CCM 8835T = LMG 30620T), Corynebacterium marambiense sp. nov. (type strain P5828T = CCM 8864T = LMG 31626T), Corynebacterium meridianum sp. nov. (type strain P6136T = CCM 8863T = LMG 31628T) and Corynebacterium pygosceleis sp. nov. (type strain P7210T = CCM 8836T = LMG 30621T) are proposed.


Assuntos
Spheniscidae , Animais , Spheniscidae/genética , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Corynebacterium , Hibridização de Ácido Nucleico , DNA , DNA Bacteriano/genética , Análise de Sequência de DNA
2.
Front Physiol ; 13: 884909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574487

RESUMO

Daily and annually cycling conditions manifested on the Earth have forced organisms to develop time-measuring devices. Circadian clocks are responsible for adjusting physiology to the daily cycles in the environment, while the anticipation of seasonal changes is governed by the photoperiodic clock. Circadian clocks are cell-autonomous and depend on the transcriptional/translational feedback loops of the conserved clock genes. The synchronization among clock centers in the brain is achieved by the modulatory function of the clock-dependent neuropeptides. In insects, the most prominent clock neuropeptide is Pigment Dispersing Factor (PDF). Photoperiodic clock measures and computes the day and/or night length and adjusts physiology accordingly to the upcoming season. The exact mechanism of the photoperiodic clock and its direct signaling molecules are unknown but, in many insects, circadian clock genes are involved in the seasonal responses. While in Drosophila, PDF signaling participates both in the circadian clock output and in diapause regulation, the weak photoperiodic response curve of D. melanogaster is a major limitation in revealing the full role of PDF in the photoperiodic clock. Here we provide the first description of PDF in the linden bug, Pyrrhocoris apterus, an organism with a robust photoperiodic response. We characterize in detail the circadian and photoperiodic phenotype of several CRISPR/Cas9-generated pdf mutants, including three null mutants and two mutants with modified PDF. Our results show that PDF acts downstream of CRY and plays a key role as a circadian clock output. Surprisingly, in contrast to the diurnal activity of wild-type bugs, pdf null mutants show predominantly nocturnal activity, which is caused by the clock-independent direct response to the light/dark switch. Moreover, we show that together with CRY, PDF is involved in the photoperiod-dependent diapause induction, however, its lack does not disrupt the photoperiodic response completely, suggesting the presence of additional clock-regulated factors. Taken together our data provide new insight into the role of PDF in the insect's circadian and photoperiodic systems.

3.
Insect Biochem Mol Biol ; 122: 103376, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339620

RESUMO

EFLamide (EFLa) is a neuropeptide known for a long time from crustaceans, chelicerates and myriapods. Recently, EFLa-encoding genes were identified in the genomes of apterygote hexapods including basal insect species. In pterygote insects, however, evidence of EFLa was limited to partial sequences in the bed bug (Cimex), migratory locust and a few phasmid species. Here we present identification of a full length EFLa-encoding transcript in the linden bug, Pyrrhocoris apterus (Heteroptera). We created complete null mutants allowing unambiguous anatomical location of this peptide in the central nervous system. Only 2-3 EFLa-expressing cells are located very close to each other near to the surface of the lateral protocerebrum with dense neuronal arborization. Homozygous null EFLa mutants are fully viable and do not have any visible defect in development, reproduction, lifespan, diapause induction or circadian rhythmicity. Phylogenetic analysis revealed that EFLa-encoding transcripts are produced by alternative splicing of a gene that also produces Prohormone-4. However, this Proh-4/EFLa connection is found only in Hemiptera and Locusta, whereas EFLa-encoding transcripts in apterygote hexapods, chelicerates and crustaceans are clearly distinct from Proh-4 genes. The exact mechanism leading to the fused Proh-4/EFLa transcript is not yet determined, and might be a result of canonical cis-splicing, cis-splicing of adjacent genes (cis-SAG), or trans-splicing.


Assuntos
Heterópteros/genética , Proteínas de Insetos/genética , Neuropeptídeos/genética , Sequência de Aminoácidos , Animais , Feminino , Heterópteros/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Filogenia , Alinhamento de Sequência , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo
4.
Int J Syst Evol Microbiol ; 70(1): 302-308, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31617844

RESUMO

A taxonomic study was carried out on four Gram-stain-negative strains P5773T, P6169, P4708 and P6245, isolated from anus or mouth samples of Weddell seals at James Ross Island, Antarctica. The results of initial 16S rRNA gene sequence analysis showed that all four strains formed a group placed in the genus Pseudomonas and found Pseudomonas guineae and Pseudomonas peli to be their closest neighbours with 99.9 and 99.2 % sequence similarity, respectively. Sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of isolates to P. peli (rpoD) and to P. guineae (rpoB and gyrB). The average nucleotide identity value below 86 %, as calculated from the whole-genome sequence data, showed the low genomic relatedness of P5773T to its phylogenetic neighbours. The complete genome of strain P5773T was 4.4 Mb long and contained genes encoding proteins with biotechnological potential. The major fatty acids of the seal isolates were summed feature 8 (C18 : 1 ω7c), summed feature 3 (C16 : 1 ω 7 c/C16  : 1 ω6c) and C16:0. The major respiratory quinone was Q9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Putrescine and spermidine are predominant in the polyamine pattern. Further characterization performed using repetitive sequence-based PCR fingerprinting and MALDI-TOF MS analysis showed that the studied isolates formed a coherent cluster separated from the remaining Pseudomonas species and confirmed that they represent a novel species within the genus Pseudomonas, for which the name Pseudomonas leptonychotis sp. nov. is suggested. The type strain is P5773T (=CCM 8849T=LMG 30618T).


Assuntos
Filogenia , Pseudomonas/classificação , Focas Verdadeiras/microbiologia , Animais , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
5.
Front Physiol ; 10: 891, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379599

RESUMO

The CRISPR/Cas9 technique is widely used in experimentation with human cell lines as well as with other model systems, such as mice Mus musculus, zebrafish Danio reiro, and the fruit fly Drosophila melanogaster. However, publications describing the use of CRISPR/Cas9 for genome editing in non-model organisms, including non-model insects, are scarce. The introduction of this relatively new method presents many problems even for experienced researchers, especially with the lack of procedures to tackle issues concerning the efficiency of mutant generation. Here we present a protocol for efficient genome editing in the non-model insect species Pyrrhocoris apterus. We collected data from several independent trials that targeted several genes using the CRISPR/Cas9 system and determined that several crucial optimization steps led to a remarkably increased efficiency of mutant production. The main steps are as follows: the timing of embryo injection, the use of the heteroduplex mobility assay as a screening method, in vivo testing of sgRNA efficiency, and G0 germline mosaicism screening. The timing and the method of egg injections used here need to be optimized for other species, but other here-described optimization solutions can be applied immediately for genome editing in other insect species.

6.
Front Microbiol ; 9: 1178, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951040

RESUMO

The genus Macrococcus is a close relative of the genus Staphylococcus. Whilst staphylococci are widespread as human pathogens, macrococci have not yet been reported from human clinical specimens. Here we investigated Gram-positive and catalase-positive cocci recovered from human clinical material and identified as Macrococcus sp. by a polyphasic taxonomic approach and by comparative genomics. Relevant phenotypic, genotypic and chemotaxonomic methods divided the analyzed strains into two separate clusters within the genus Macrococcus. Comparative genomics of four representative strains revealed enormous genome structural plasticity among the studied isolates. We hypothesize that high genomic variability is due to the presence of a com operon, which plays a key role in the natural transformation of bacilli and streptococci. The possible uptake of exogenous DNA by macrococci can contribute to a different mechanism of evolution from staphylococci, where phage-mediated horizontal gene transfer predominates. The described macrococcal genomes harbor novel plasmids, genomic islands and islets, as well as prophages. Capsule gene clusters, intracellular protease, and a fibronectin-binding protein enabling opportunistic pathogenesis were found in all four strains. Furthermore, the presence of a CRISPR-Cas system with 90 spacers in one of the sequenced genomes corresponds with the need to limit the burden of foreign DNA. The highly dynamic genomes could serve as a platform for the exchange of virulence and resistance factors, as was described for the methicillin resistance gene, which was found on the novel composite SCCmec-like element containing a unique mec gene complex that is considered to be one of the missing links in SCC evolution. The phenotypic, genotypic, chemotaxonomic and genomic results demonstrated that the analyzed strains represent one novel subspecies and three novel species of the genus Macrococcus, for which the names Macrococcus caseolyticus subsp. hominis subsp. nov. (type strain CCM 7927T = DSM 103682T), Macrococcus goetzii sp. nov. (type strain CCM 4927T = DSM 103683T), Macrococcus epidermidis sp. nov. (type strain CCM 7099T = DSM 103681T), and Macrococcus bohemicus sp. nov. (type strain CCM 7100T = DSM 103680T) are proposed. Moreover, a formal description of Macrococcus caseolyticus subsp. caseolyticus subsp. nov. and an emended description of the genus Macrococcus are provided.

7.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29079617

RESUMO

Two Gram-stain-positive, coagulase-negative staphylococcal strains were isolated from abiotic sources comprising stone fragments and sandy soil in James Ross Island, Antarctica. Here, we describe properties of a novel species of the genus Staphylococcus that has a 16S rRNA gene sequence nearly identical to that of Staphylococcus saprophyticus However, compared to S. saprophyticus and the next closest relatives, the new species demonstrates considerable phylogenetic distance at the whole-genome level, with an average nucleotide identity of <85% and inferred DNA-DNA hybridization of <30%. It forms a separate branch in the S. saprophyticus phylogenetic clade as confirmed by multilocus sequence analysis of six housekeeping genes, rpoB, hsp60, tuf, dnaJ, gap, and sod Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and key biochemical characteristics allowed these bacteria to be distinguished from their nearest phylogenetic neighbors. In contrast to S. saprophyticus subsp. saprophyticus, the novel strains are pyrrolidonyl arylamidase and ß-glucuronidase positive and ß-galactosidase negative, nitrate is reduced, and acid produced aerobically from d-mannose. Whole-genome sequencing of the 2.69-Mb large chromosome revealed the presence of a number of mobile genetic elements, including the 27-kb pseudo-staphylococcus cassette chromosome mec of strain P5085T (ψSCCmecP5085), harboring the mecC gene, two composite phage-inducible chromosomal islands probably essential to adaptation to extreme environments, and one complete and one defective prophage. Both strains are resistant to penicillin G, ampicillin, ceftazidime, methicillin, cefoxitin, and fosfomycin. We hypothesize that antibiotic resistance might represent an evolutionary advantage against beta-lactam producers, which are common in a polar environment. Based on these results, a novel species of the genus Staphylococcus is described and named Staphylococcus edaphicus sp. nov. The type strain is P5085T (= CCM 8730T = DSM 104441T).IMPORTANCE The description of Staphylococcus edaphicus sp. nov. enables the comparison of multidrug-resistant staphylococci from human and veterinary sources evolved in the globalized world to their geographically distant relative from the extreme Antarctic environment. Although this new species was not exposed to the pressure of antibiotic treatment in human or veterinary practice, mobile genetic elements carrying antimicrobial resistance genes were found in the genome. The genomic characteristics presented here elucidate the evolutionary relationships in the Staphylococcus genus with a special focus on antimicrobial resistance, pathogenicity, and survival traits. Genes encoded on mobile genetic elements were arranged in unique combinations but retained conserved locations for the integration of mobile genetic elements. These findings point to enormous plasticity of the staphylococcal pangenome, shaped by horizontal gene transfer. Thus, S. edaphicus can act not only as a reservoir of antibiotic resistance in a natural environment but also as a mediator for the spread and evolution of resistance genes.


Assuntos
Adaptação Biológica/genética , Frio Extremo , Ambientes Extremos , Genes Bacterianos/fisiologia , Ilhas Genômicas/fisiologia , Staphylococcus/classificação , Regiões Antárticas , Staphylococcus/genética , Staphylococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...